NbShare
  • Nbshare Notebooks

  • Table of Contents

  • Python Utilities

    • How To Install Jupyter Notebook
    • How to Upgrade Python Pip
    • How To Use Python Pip
  • Python

    • Python Datetime
    • Python Dictionary
    • Python Generators
    • Python Iterators and Generators
    • Python Lambda
    • Python Sort List
    • String And Literal In Python 3
    • Strftime and Strptime In Python
    • Python Tkinter
    • Python Underscore
    • Python Yield
  • Pandas

    • Aggregating and Grouping
    • DataFrame to CSV
    • DF to Numpy Array
    • Drop Columns of DF
    • Handle Json Data
    • Iterate Over Rows of DataFrame
    • Merge and Join DataFrame
    • Pivot Tables
    • Python List to DataFrame
    • Rename Columns of DataFrame
    • Select Rows and Columns Using iloc, loc and ix
    • Sort DataFrame
  • PySpark

    • Data Analysis With Pyspark
    • Read CSV
    • RDD Basics
  • Data Science

    • Confusion Matrix
    • Decision Tree Regression
    • Logistic Regression
    • Regularization Techniques
    • SVM Sklearn
    • Time Series Analysis Using ARIMA
  • Machine Learning

    • How To Code RNN and LSTM Neural Networks in Python
    • PyTorch Beginner Tutorial Tensors
    • Rectified Linear Unit For Artificial Neural Networks Part 1 Regression
    • Stock Sentiment Analysis Using Autoencoders
  • Natural Language
    Processing

    • Opinion Mining Aspect Level Sentiment Analysis
    • Sentiment Analysis using Autoencoders
    • Understanding Autoencoders With Examples
    • Word Embeddings Transformers In SVM Classifier
  • R

    • DataFrame to CSV
    • How to Create DataFrame in R
    • How To Use Grep In R
    • How To Use R Dplyr Package
    • Introduction To R DataFrames
    • Tidy Data In R
  • A.I. News
NbShare Notebooks
  • Publish Your Post On nbshare.io

  • R Python Pandas Data Science Excel NLP Numpy Pyspark Finance

Pandas Groupby Count of Rows In Each Group

Let us first create a dummy dataframe for this tutorial.

In [3]:
import pandas as pd

df = pd.DataFrame({'Director': ['Steven Spielberg', 'Martin Scorsese', 'Steven Spielberg', 'Quentin Tarantino', 'Martin Scorsese', 'Steven Spielberg'],
                   'Movie': ['Jaws', 'Goodfellas', 'Jurassic Park', 'Pulp Fiction', 'Raging Bull', 'E.T.']})
In [4]:
print(df)
            Director          Movie
0   Steven Spielberg           Jaws
1    Martin Scorsese     Goodfellas
2   Steven Spielberg  Jurassic Park
3  Quentin Tarantino   Pulp Fiction
4    Martin Scorsese    Raging Bull
5   Steven Spielberg           E.T.

Using pandas groupby size()

To get the count of rows in each group in a Pandas groupby object based on the movies data, you can use the size() method.

In [5]:
# Group the dataframe by the 'Director' column
grouped_df = df.groupby('Director')

# Get the size of each group
group_sizes = grouped_df.size()

print(group_sizes)
Director
Martin Scorsese      2
Quentin Tarantino    1
Steven Spielberg     3
dtype: int64

Using pandas groupby count()

You can also use the count() method to get the count of rows for each group. This method will count the number of non-NA/null values in each group.`

In [6]:
# Get the count of rows for each group
group_counts = grouped_df.count()

print(group_counts)
                   Movie
Director                
Martin Scorsese        2
Quentin Tarantino      1
Steven Spielberg       3

Difference between size() and count()

Using the size() method, we will get the total number of rows in each group, On the other hand, if we use the count() method, we will get the number of non-NA/null values in each column for each group.

Related Notebooks

  • PySpark GroupBy Examples
  • How To Iterate Over Rows In A Dataframe In Pandas
  • Pandas How To Sort Columns And Rows
  • A Study of the TextRank Algorithm in Python
  • How To Append Rows With Concat to a Pandas DataFrame
  • Select Pandas Dataframe Rows And Columns Using iloc loc and ix
  • An Anatomy of Key Tricks in word2vec project with examples
  • Python IndexError List Index Out of Range
  • Summarising Aggregating and Grouping data in Python Pandas

Register

User Already registered.


Login

Login

We didn't find you! Please Register

Wrong Password!


Register
    Top Notebooks:
  • Data Analysis With Pyspark Dataframe
  • Strftime and Strptime In Python
  • Python If Not
  • Python Is Integer
  • Dictionaries in Python
  • How To install Python3.9 With Conda
  • String And Literal In Python 3
  • Privacy Policy
©