There are several approaches you can take to map enums to functions in Python. Here are the 3 different ways to do it.
Using a dictionary: You can use a dictionary to map the values of the enum to the functions you want to call. For example:
In [1]:
from enum import Enum
class Operation(Enum):
ADD = 1
SUBTRACT = 2
MULTIPLY = 3
DIVIDE = 4
def add(a, b):
return a + b
def subtract(a, b):
return a - b
def multiply(a, b):
return a * b
def divide(a, b):
return a / b
operation_map = {
Operation.ADD: add,
Operation.SUBTRACT: subtract,
Operation.MULTIPLY: multiply,
Operation.DIVIDE: divide
}
def calculate(operation, a, b):
return operation_map[operation](a, b)
result = calculate(Operation.ADD, 2, 3)
print(result) # Output: 5
5
Using a list or an array: You can also use a list or an array to store the functions, and use the enum value as an index to access the appropriate function. For example:
In [2]:
from enum import Enum
class Operation(Enum):
ADD = 0
SUBTRACT = 1
MULTIPLY = 2
DIVIDE = 3
def add(a, b):
return a + b
def subtract(a, b):
return a - b
def multiply(a, b):
return a * b
def divide(a, b):
return a / b
operation_list = [add, subtract, multiply, divide]
def calculate(operation, a, b):
return operation_list[operation](a, b)
result = calculate(Operation.ADD.value, 2, 3)
print(result) # Output: 5
5
Using a function decorator: You can define a function decorator that takes an enum value as an argument, and registers the decorated function with the corresponding enum value. Here's an example:
In [3]:
from enum import Enum
class Operation(Enum):
ADD = 1
SUBTRACT = 2
MULTIPLY = 3
DIVIDE = 4
operation_map = {}
def register_operation(operation):
def decorator(func):
operation_map[operation] = func
return func
return decorator
@register_operation(Operation.ADD)
def add(a, b):
return a + b
@register_operation(Operation.SUBTRACT)
def subtract(a, b):
return a - b
@register_operation(Operation.MULTIPLY)
def multiply(a, b):
return a * b
@register_operation(Operation.DIVIDE)
def divide(a, b):
return a / b
def calculate(operation, a, b):
return operation_map[operation](a, b)
result = calculate(Operation.ADD, 2, 3)
print(result) # Output: 5
5
Related Notebooks
- Activation Functions In Python
- Activation Functions In Artificial Neural Networks Part 2 Binary Classification
- How to Plot a Histogram in Python
- How to Generate Random Numbers in Python
- How To Solve Linear Equations Using Sympy In Python
- How To Convert Python List To Pandas DataFrame
- How To Write DataFrame To CSV In R
- How To Code RNN and LSTM Neural Networks in Python
- Five Ways To Remove Characters From A String In Python